
RTP-Miner: A Real-time Security Framework for RTP
Fuzzing Attacks

M. Ali Akbar and Muddassar Farooq
Next Generation Intelligent Networks Research Center (nexGIN RC)

National University of Computer & Emerging Sciences (FAST-NUCES)
Islamabad, Pakistan

ali.akbar@nexginrc.org, muddassar.farooq@nu.edu.pk

ABSTRACT
Real-time Transport Protocol (RTP) is a widely adopted stan-
dard for transmission of multimedia traffic in Internet tele-
phony (commonly known as VoIP). Therefore, it is a hot po-
tential target for imposters who can launch different types
of Denial of Service (DoS) attacks to disrupt communica-
tion; resulting in not only substantive revenue loss to VoIP
operators but also undermining the reliability of VoIP infras-
tructure. The major contribution of this paper is an online
framework – RTP-Miner – that detects RTP fuzzing attacks
in realtime; as a result, it is not possible to deny access to
legitimate users. RTP-Miner can detect both header and
payload fuzzing attacks. Fuzzing in the header of RTP pack-
ets is detected by combining well known distance measures
with a decision tree based classifier. In comparison, pay-
load fuzzing is detected through a novel Markov state space
model at the receiver. We evaluate RTP-Miner on a real-
world RTP traffic dataset. The results show that RTP-Miner
detects fuzzing in RTP header with more than 98% accu-
racy and less than 0.1% false alarm rate even when only 3%
fuzzing is introduced. For the same fuzzing rate, it detects
payload fuzzing – a significantly more challenging problem –
with more than 80% accuracy and less than 2% false alarm
rate. RTP-Miner has low memory and processing overheads
that makes it well suited for deployment in real world VoIP
infrastructure.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—
Security and protection

General Terms
Experimentation, Security

Keywords
Denial of Service, Real-time Transport Protocol, Fuzzing
Attacks, VoIP, Machine Learning, Stochastic Models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$5.00.

1. INTRODUCTION
The global communication market is rapidly moving to-

wards Voice over Internet (VoIP). The prime motivation be-
hind this trend is ubiquitous availability of high-bandwidth
Internet at cheaper rates compared with circuit switched
telecommunication networks. A market survey released in
2008 shows that VoIP traffic accounts for 49.7% of total voice
traffic [22]. In 2007, a German company Ipoque carried out
an in-depth analysis of 3 petabytes of Internet traffic col-
lected from five regions of the world. The results of their
study show that 30% of German Internet users subscribe to
VoIP services [9].

The popularity of VoIP makes it an attractive target for
attackers. VoIP servers are included in the SANS Top 20 Se-
curity Risks [15]. Another study shows that VoIP servers are
among the top 5 emerging cyber security threats in the year
2009 [7]. The intruders know that a successfully launched
Denial of Service (DoS) attacks on VoIP servers can result
not only in huge financial losses to the operator and its cus-
tomers, but also can seriously undermine its credibility. In
VoIP, Session Initiation Protocol (SIP) is used during the
signaling phase of establishing VoIP calls. Later, media is
transferred using widely adopted Real-time Transport Pro-
tocol (RTP)[16]. The focus of this paper is to analyze vulner-
abilities in RTP1 protocol and propose effective and efficient
countermeasures to mitigate them.

The open nature of Internet enables smart attackers to ex-
ploit vulnerabilities in media servers (mostly running RTP)
and VoIP phones by mutating different fields in the header
and changing byte patterns in the payload of RTP pack-
ets. In the first case, they aim at crashing the protocol
processing component of an RTP based multimedia applica-
tion. In the second case of payload fuzzing, they aim at
exploiting vulnerabilities in the buffer management, align-
ment of bytes in the payload, decoding of received multime-
dia streams and playing them to the end user. In recent past,
several researchers have identified these malformed (fuzzed)
RTP packet vulnerabilities for multimedia proxies & servers,
packet sniffers and SIP phones [3, 17, 25, 4]. Recently, secu-
rity researchers have crashed a widely used Cisco IP phone
when it was repeatedly exposed to fuzzed RTP packets [5].
An attacker, by exploiting these vulnerabilities, is able to
crash a VoIP application/device that results in causing de-
nial of service to the legitimate users. In the worst case

1In this paper, the term RTP only refers to the data transfer
sub-protocol of RTP, and not the Real-Time Control Protocol
RTCP, which is used for managing QoS of a session.

Figure 1: RTP Header Format

scenario, it might enable an attacker to remotely execute
malicious code on the compromised system.

The major contribution of this paper is RTP-Miner – an
efficient and effective online intrusion detection framework –
that can detect header and payload fuzzing attacks in real-
time. The fuzzing in the known header fields is detected by
modeling the difference in the header fields of benign2 RTP

traffic with that of fuzzed RTP by using well known infor-
mation theoretic distance measures. We use a decision tree
based classifier to identify an RTP packet with fuzzed header.
In comparison, it is a challenge to detect fuzzed payloads be-
cause here fuzzing means arbitrarily changing different bit
patterns. We use a novel Markov state space model to iden-
tify payload fuzzing at the receiver application without re-
quiring the sender application to insert checksums3. Other
important contributions of the paper are collection of real-
world RTP datasets, and development of a tool that can apply
fuzzing transformations in header and payload of RTP pack-
ets. The results of our experiments show that RTP-Miner
is able to detect fuzzing in RTP header with more than 98%
accuracy and less than 0.1% false alarm rate even when only
3% fuzzing is introduced. For same fuzzing rate, it detects
payload fuzzing with more than 80% accuracy and less than
2% false alarm rate. Last but not least, RTP-Miner has low
memory and processing overheads that makes it well suited
for online deployment in real world VoIP infrastructure.

The rest of the paper is organized as follows. In Section 2,
we describe that how we have collected real-world RTP traffic
datasets and fuzzed datasets. We present the architecture
of RTP-Miner in Section 3. We discuss the results of our
experiments in Section 4. The related work is described in
Section 5. Finally, we conclude the paper with an outlook
to our future work.

2. DATASET AND REAL-WORLD TESTBED
In this section, we describe our benign and fuzzed RTP traf-

fic datasets. We also discuss the architecture of our testbed
that we have used to collect real-world RTP media traffic. We
also present our fuzzing process that can be customized to
introduce (not so easy to detect) fuzzing at different rates –
both in header and payload – in RTP packets.

Benign Dataset. Our real-world RTP testbed is shown
in Figure 2 that we deployed in IMS Lab of our research

2The term benign refers to packets that do not have mal-
formed (mutated) header or payload. In comparison, mal-
formed RTP packets are termed as fuzzed.
3Checksums can be easily evaded in an unencrypted traffic
flow because an attacker can recompute them after fuzzing
the packet. Moreover, encryption becomes useless if the at-
tacker is also the sender of the message.

Private Local Area

Network of Organization

End User

End User

End UserEnd User

Media Server Sniffer and

Fuzzer

Analysis

Machine

RTP-Miner Framework

RTP

Streams

LAN Switch

Sniffed

Traffic

Benign and

Fuzzed Traffic

Results

Dumps

Figure 2: Real World Testbed

center. Our center consists of a number of Labs and offices
that are connected through a private local area network.
Our network provides services to 25 users, which include
professors, researcher engineers, students and support staff.
The voice communication among these users is established
through a local VoIP service that consists of a SIP soft-
switch and RTP media server. For our experiments, we use
dsniff [20] that sniffs the RTP traffic from the central switch.
We logged RTP sessions for one day and used them in our
experiments. Important statistics of collected RTP packets
are: (1) the average RTP packet size in the collected dataset
is 268 bytes, (2) total number of benign RTP packets are
40119, (3) the maximum inter-arrival time between two RTP

packets is 564 msec, and (4) the average and maximum jitter
are 43.85 msec and 60.7 msec respectively.

We have used MPEG-I/II Audio encoding which is widely
deployed in many VoIP products [8]. An important reason
for selecting this payload format is that a smart attacker can
inject complex pathological datagrams in MPEG-I/II Audio

encoded stream to launch a DoS attack [8]. In well known
audio players, a number of vulnerabilities have been iden-
tified that could be exploited using specially crafted mal-
formed MPEG encoded audio streams [14].

Fuzzed Datasets. We perform fuzzing in the header
and payload of RTP packets. The structure of RTP header is
shown in Figure 1. It consists of 9 fields and the total size of
header is 96 bits. An interested reader can find description of
these fields in [16]. In case of 1% fuzzing, we randomly select
a bit and invert it. To generalize, x% fuzzing means that
randomly selected x% bits are inverted. In case of payload
fuzzing, if we want to apply y% fuzzing, then we randomly
select y% bits of the payload and invert them. This process
of fuzzing by introducing bit errors in RTP packets is not
new and has been successfully used in VoIP fuzzing tools
in the past [23]. We ensure that no obvious artifacts are
introduced in fuzzed dataset that make detection intuitively
simple.(For example our fuzzed dataset also contains 40119
fuzzed packets with same average size of 268 bytes as that
of benign packets to rule out detection on the basis of size.)

Analysis of Datasets. We now analyze both datasets
to build intuition about detecting fuzzed packets. In Figure
3(a), we show time stamps of 10 packets of benign and fuzzed
datasets. We can see that the sum of differences – measured
with well known Manhattan Distance – between time stamps
of benign RTP packets is significantly smaller compared with
a window that contains a packet with fuzzed time stamp. In
order to detect fuzzing in header, we need to compute the

...
3543935098

3543937449

3543939800

3543942151

3543944502

3543946853

3543949204

3543951555

3543953906

3543956257...

...
3543935098

3543937449

3543939800

3543942123

3543944502

3543946853

3543949204

3543951555

3543953906

2470214433...

21159 1073758281

[Benign] [Fuzzed]

Timestamps

Packet No.

1

2

3

4

5

6

7

8

9

10

Manhattan Distance

(a) Header

...00 01 2D DB 6E 3F F8...

...00 01 2D DB 6E 3F B8...

[Benign]

[Fuzzed]

Payload

S[3F]

S[F8] S[B8]

0.030.76

(b) Payload

Figure 3: Fuzzing in RTP Header and Payload

difference of each field within a window of packets and then
apply suitable threshold mechanism to detect fuzzed header.

In comparison, it is not possible to apply a distance mea-
sure on payload because it does not consist of fixed fields;
rather, it consists of byte sequences that follow some proba-
bility distribution. (This insight is developed through rigor-
ous analysis of byte sequences appearing in payload of hun-
dreds of RTP packets.) More specifically, we can determine
the probability of encountering a given byte on the basis of
current byte. We show a subset of state transition diagram
of benign payload in Figure 3(b). If the current byte is 3F, it
is highly unlikely in a benign packet that the following byte
will be B8; as a result, a fuzzed packet can be potentially
detected through a sequence of unlikely state transitions.

3. ARCHITECTURE OF RTP-MINER
We now present detailed architecture of our intrusion de-

tection system – RTP-Miner – for detecting header and pay-
load based fuzzing attacks. The system diagram of our
framework is shown in Figure 4. An incoming RTP traffic
stream is sniffed from an RTP session. We then split an RTP

packet into header and payload and store it into memory.
The header is processed by Header Fuzzing Detection Mod-
ule (MH) and the payload is processed by Payload Fuzzing
Detection Module (MP). Both modules use separate mod-
els to identify header or payload fuzziness. If any module
raises an alarm, it is dropped; otherwise, it is given to the
RTP application. We now discuss both modules separately.

3.1 Header Fuzzing Detection Module (MH)
The basic working principle of this module – as mentioned

before – is that the header fields of subsequent packets in
an RTP session are closely related. Consequently, we monitor
the spatial distribution of header fields in a sliding window of
k packets. The sliding window is implemented using a queue:
when nth packet arrives, its header fields are enqueued and
the (n− k)th packet’s header fields are dequeued.

In order to monitor the spatial behavior of each of the 9
header fields (see Figure 1), we apply well known distance
measures4 (tabulated in Table 1) on the header fields of the
packets within a given window. As a result, we are able to
model difference between different fields of packets in a given

4For brevity, we skip details about distance measures, but
an interested reader can find them in [21].

Table 1: Information Theoretic Distance Measures
Distance Formula

Angular Separation das =

Pk−1
j=1 Xj.Xj+1

(
Pk−1

j=1 X2
j .
Pk−1

j=1 X2
j+1)

1
2

Chebyshev Distance dch = max|Xj − Xj+1|
Entropy den = −

Pk
j=1 Xj.log2(Xj)

Manhattan Distance dma =
Pk−1

j=1 |Xj − Xj+1|

sliding window. We also need to learn (from the pattern of
these differences) a threshold value for a given distance mea-
sure of each header field (X) that acts as the classification
boundary between benign and fuzzed packets.

We use well known rule based machine learning classifier
– J48 – that is trained on a small subset of our labeled be-
nign and fuzzed RTP datasets. J48 is an open source Java
implementation of the C4.5 algorithm [13]. C4.5 classifica-
tion algorithm builds a decision tree to do classification of a
given instance into benign and fuzzed. The feature (in our
case a distance measure) that has the greatest classification
potential (in machine learning it is called information gain)
is selected as root node in the decision tree. The algorithm
is repeated on the subsets until all features have been eval-
uated or no additional information gain is achieved by split-
ting data using the remaining features. After the decision
tree is constructed, it is pruned to remove useless branches.

During the testing phase, the decision rules generated by
J48 are used for classifying a window of RTP packets as be-
nign or fuzzed. An excerpt from the decision tree is given
below which contains the rule – [d(timestamp) > 21167:

fuzzed] – and it is fired when a fuzzed packet arrives (see
Figure 3(a)). Here, d(timestamp) denotes the Manhattan
distance between the timestamps of packets of a window.

... d(timestamp) <= 21167

| d(version) <= 0

| | ...

| d(version) > 0: fuzzed

... d(timestamp) > 21167: fuzzed

3.2 Payload Fuzzing Detection Module (MP)
We have already discussed that the fuzzing detection in

the payload of an RTP packet is significantly more challeng-
ing compared with fuzzing detection in the header because
payload does not contain well defined fields. Our analysis
reported in Section 2 reveals that the byte sequences, ap-
pearing in the payload of RTP packets, follow some sort of
random distribution. Therefore, we model the payload as
a random process with each byte representing a state and
the sequence of bytes representing state transitions. In this
way, we create a first order finite Markov Chain [10] that
models the benign payload as a discrete state space model.
We use this state space model to assign an anomaly score
to the payload of each incoming RTP packet. If the anomaly
score exceeds a threshold, the packet is declared as fuzzed
and is dropped from the packet stream.

State Space Model. We now present the state space
model of our anomaly detection module. If bi is the ith
symbol in the payload, then the payload can be represented
as an ordered set of symbols B = {b1, b2, ...bn}, where n
is the length of the payload. Let S = {s0, s1, s2, ...sk} be
the possible states of the system and s0 be the initial state.
Each symbol in the payload is mapped to one state of the

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker |

Sequence | Timestamp |

SSRC

Payload:

<FrameEncodingStart>

Multimedia Raw Traffic

<FrameEncodingEnd>

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker |

Sequence | Timestamp |

SSRC

Payload:

<FrameEncodingStart>

Multimedia Raw Traffic

<FrameEncodingEnd>

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker |

Sequence | Timestamp |

SSRC

Payload:

<FrameEncodingStart>

Multimedia Raw Traffic

<FrameEncodingEnd>

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker |

Sequence | Timestamp |

SSRC

Payload:

<FrameEncodingStart>

Multimedia Raw Traffic

<FrameEncodingEnd>

Payload:

<FrameEncodingStart>

Multimedia Raw Traffic

<FrameEncodingEnd>

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker | Sequence |

Timestamp | SSRC

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker | Sequence |

Timestamp | SSRC

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker | Sequence |

Timestamp | SSRC

Header:

CSRC | Ext | Ver | Padding |

Payload | Marker | Sequence |

Timestamp | SSRC

Rules?

Threshold

Anomaly Score

< Threshold?
Anomaly Score

Calculation

Drop Packet Pass Packet

Incoming

RTP Traffic

Fixed Size RTP Packet

Headers Queue

RTP Packet

Payload

Packet

Header Fields

Payload

Sequences

Features =

d(HeaderFields)

Training Phase

Two class

Dataset
J48 Classifier

Training Phase

Normal

Payload

Dataset
Markov Transition

Probability Matrix

TRUE

TRUE

FALSE

FALSE
MH

MP

Figure 4: Architecture of RTP-Miner: Intrusion Detection Framework for RTP Fuzzing Attacks

system (f : bi → sx ∈ S). We say that a state transition has
occurred when a symbol bi+1 follows the symbol bi. Specif-
ically, if f : bi → sx and f : bi+1 → sy holds, we show
transition between the two states as sxy and the probability
of this state transition as pxy. We now define a transition
function T that maps input symbols and state space to state
transition probabilities. Mathematically, T : S× B → P (S),
where P (S) denotes the state transition probability matrix
of S. As the total number of possible states is k + 1 (in-
cluding the initial state), and transitions are possible from
one state to k different states; therefore, P (S) is a matrix of
size (k + 1) × k. Each row 0 ≤ i ≤ k of P (S) satisfies the

condition of probability which is
Pk

j=1 pij = 1.
During training phase, we read the payload of benign RTP

packets as a byte stream. Each byte is taken as a symbol and
the sequences of bytes represent state transitions. Assuming
that the probability of each state transition is dependent
only on the current state and not on any previous states5,
we calculate state transition probability matrix P (S).

Anomaly Score Calculation. Our final objective is to
detect fuzzed payloads during the testing phase within linear
time (O(n)). With this objective in mind, we propose an
incremental anomaly score calculation algorithm using the
state transition probability matrix P (S) and the incoming
payload bytes B. Let us start with an initial anomaly score
χ0 = 0. For each byte sequence(bi−1, bi) that represents a
state transition (f : bi−1, f : bi), we increment the anomaly
score by ∆χi. We quantify the change in anomaly (∆χi)
on the basis of two factors: (1) it is directly proportional
to the probability that the state transition will not occur
(∆χi ∝ (1 − pρη)), and (2) it is inversely proportional to
the density of the state transition probabilities for a given
state (∆χi ∝ 1/(−

Pk
j=1 pρj .log2(pρj))). If n is the size of

the payload (size of the ordered set B), then for 1 ≤ i ≤ n,

5This is known as Markov property (p(Sn+1 = s|S1 =
s1, S2 = s2..., Sn = sn) = p(Sn+1 = s|Sn = sn)).

pρη = T (f : bi−1, f : bi) (1)

χi = χi−1 +
1− pρη

−
Pk

j=1 pρj .log2(pρj)
(2)

For example, the unlikely (low pρj) state transition in
fuzzed payload – as shown in Figure 3(b) – will result in
a high change in anomaly score (∆χi = 2.064) as com-
pared to the likely (high pρj) state transition in benign pay-
load (∆χi = 0.51). Therefore, we can identify RTP packet
with fuzzed payload based on its high anomaly score using
a fixed threshold. After completion of n iterations, the final
anomaly score χn is normalized (χ̄n). The density of the
state transition probabilities for all states is already com-
puted at the end of the training phase. As a result, the
testing time for our proposed algorithm is linear (O(n)).
We compare the final anomaly score χ̄n with a threshold χt.
If χ̄n > χt, the packet is labeled as fuzzed and is dropped.

4. EXPERIMENTS & RESULTS
In this section, we evaluate the performance of RTP-Miner.

We measure the performance on the basis of four metrics:
(1) Detection Rate (DR) – the percentage fraction of fuzzed
packets correctly detected as fuzzed, (2) False Alarm Rate
(FAR) – the percentage fraction of benign packets incor-
rectly declared as fuzzed, (3) Processing latency (δt) – pro-
cessing overhead to classify an incoming RTP packet as be-
nign or fuzzed, and (4) Memory usage (Mu) – amount of
memory needed to store features’ set and discrete state space.

The accuracy of RTP-Miner is dependent on training datasets.
We see in Figure 5(a) that if our system is trained on 1%
fuzzed header datasets, the detection rate is significantly im-
proved during testing phase. We run experiments to find out
that a window size of 10 packets gives best accuracy. The
results in Figure 5(a) are for Chebyshev Distance but the
pattern remains same for other distance measures as well.

1 2 3 5 10
40

50

60

70

80

90

100

Fuzzing Rate of Test Dataset (%)

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Trained on 1% Fuzzing Rate

Trained on 5% Fuzzing Rate

Trained on 10% Fuzzing Rate

(a) Header Training Dataset

500 1000 1500 2000 2500100

0.2

0.4

0.6

0.8

1

Number of RTP Packets in Training Dataset

A
ff
in

it
y
 i
n

 T
ra

n
s
it
io

n
 M

a
tr

ix

(b) Payload Training Size

0 10 20 30 40 50
50

60

70

80

90

100

False Alarm Rate (%)

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

1% Fuzzing Rate

2% Fuzzing Rate

3% Fuzzing Rate

5% Fuzzing Rate

10% Fuzzing Rate

20% Fuzzing Rate

(c) ROC for Payload Detection

Figure 5: Results

Table 2: Classification Accuracy Results for RTP Header and Payload Fuzzing Detection
Fuzzing Rate

1% 2% 3% 5% 10% 20%

Module DR FAR DR FAR DR FAR DR FAR DR FAR DR FAR
Header(AngularS.) 75.2 0.0 94.0 0.0 98.9 0.0 98.9 0.0 100.0 0.0 100.0 0.0
Header(Chebyshev) 89.6 0.0 99.0 0.0 99.9 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Header(Entropy 79.0 0.0 95.2 0.0 99.3 0.0 100.0 0.0 100.0 0.0 100.0 0.0
Header(Manhattan) 88.9 0.0 98.8 0.0 99.9 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Payload 34.3 1.4 71.2 1.8 81.8 1.8 87.0 1.4 92.2 1.4 95.4 1.4

We know that payload fuzzing detection module is anomaly
based and hence only requires benign packets; therefore, it
is important to know the minimum number of benign pack-
ets needed to have complete state space model along with
associated probabilities of state transitions. Let ri be the
number of packets used for training and Pri be the proba-
bility distribution of transitions from a particular state j to
all states. We add ∆r packets to the training dataset and
the new probability distribution is Pri+∆r. We measure the
similarity between the two probability distributions by using
affinity (a well known distance measure) [6]:

Aij(Pri , Pri+∆r) =

kX
α=1

q
p
(α)
ri p

(α),
ri+∆r (3)

where the parenthesized superscript (α) is the index, not
the power. We start with a training dataset of r0 = 100
packets and iteratively add ∆r = 100 packets. For each
step, we calculate the minimum affinity between the states
(minj(Aij)). The resulting minimum affinity for i = 1 to 25
(corresponding to a training size of 100 to 2500 packets) is
plotted in Figure 5(b). It is obvious that the affinity does
not increase if we use more than 2000 packets in our dataset;
therefore, we conclude that training on 2000 benign packets
is sufficient to evolve our benign Markov model.

4.1 Classification Accuracy Results
We now present and discuss the classification accuracy

results for RTP-Miner in terms of DR and FAR separately
for both header and payload fuzzing detection.

Header Fuzzing Detection. We evaluate RTP-Miner
by using four well known distance measures and the accu-
racy results are tabulated in Table 2. (Remember we have
trained our classifier on 1% fuzzed dataset with a sliding
window of 10 packets.) Our header fuzzing detection mod-
ule – using Chebyshev and Manhattan distance measures
– achieves more than 88% DR with 0% FAR even for 1%
fuzzed dataset. The DR exceeds 99% just for 2% fuzzed

rates. We short list Chebyshev and Manhattan distance
measures as the potential features for our header fuzzing
detection module. From Table 1, we observe that Cheby-
shev distance can be computed in (O(k+1)) because of only
one subtraction operator and a maximum operator, making
it suitable for realtime deployment.

Payload Fuzzing Detection. We tabulate the accuracy
results for payload detection in Table 2. Moreover, we plot
ROC for different fuzzing rates in Figure 5(c). As expected,
it is significantly more challenging to detect fuzzing in the
payload. The reason is that RTP payload consists of multi-
media traffic which has a random distribution; as a result,
small fuzzing rates do not have significant perturbations in
the distribution of payload. It is, however, interesting to see
that just for 2% fuzzing, our system is able to detect 70%
of fuzzed packets with less than 2% false alarm rate. An
obvious trend in Table 2 is that FAR never exceeds 2%. We
need to analyze the impact of dropping 2% benign packets
on RTP sessions. Assuming that each packet contains 40 ms
of data, the average packet size is 260 bytes and round trip
time (RTT) is 200 ms; we estimate by using the methodol-
ogy given in [12] that a packet loss rate of 6.2% is acceptable
in our RTP media session. A drop rate of 2% is significantly
smaller compared with this upper bound and hence we can
safely conclude that this false alarm rate will not result in
human perceivable degradation in the media quality.

To conclude, RTP-Miner is able to detect fuzzing in RTP

header with more than 99% DR and 0% FAR even when
only 3% fuzzing is introduced. For the same fuzzing rate,
it detects payload fuzzing – a significantly more challenging
problem – with more than 80% DR and less than 2% FAR.

4.2 Memory & Processing Overheads
The memory usage (Mu) and processing latency (δt) met-

rics (using Chebyshev distance) are listed in Table 3. It
is clear from the table that processing overhead for each
packet is significantly smaller compared with the average
jitter (12.463 µsec as compared to 43.85 msec). Moreover,

Table 3: Memory and Processing Overheads
Processing Memory

Module Latency (δt) Usage (Mu)
Header Module (MH) 7.727 µsec/pkt 1.828 KB
Payload Module (MP) 4.736 µsec/pkt 258 KB
Both Modules (series) 12.463 µsec/pkt 259.8 KB

Both Modules (parallel) 7.727 µsec/pkt 259.8 KB

our framework requires only 260KB of additional memory
for storing its models. These resource requirements – cou-
pled with high accuracy – make RTP-Miner a suitable can-
didate for online deployment in real-world scenarios even on
resource constrained mobile devices.

5. RELATED WORK
Recently, a number of security frameworks have been pro-

posed for VoIP intrusion detection [2, 19, 11]. However,
most of these frameworks focus on SIP attacks or are re-
stricted to RTP flooding attacks. Similarly, a number of re-
search contributions present threat models for RTP protocol
[24]. The objective of proposing different protocol state ma-
chines in [26, 18] is to detect RTP flooding and media spam.

In [5], the authors have shown security vulnerabilities of a
widely used IP phone (Cisco 7960G) in handling RTP streams.
Similarly, the authors in [1] also reported crash of several IP
phones when subjected to fuzzing attacks. In comparison,
little attention is paid to detect RTP fuzzing attacks; there-
fore, to the best of our knowledge, RTP-Miner is the first
attempt to mitigate this serious threat in RTP.

6. CONCLUSION & FUTURE WORK
In this paper, we have presented an efficient, online intru-

sion detection framework (RTP-Miner) for real-time detec-
tion of RTP fuzzing attacks, that can ultimately lead to denial
of service to legitimate users. Our results show that Cheby-
shev distance measure combined with J48 classifier is a good
technique to accurately detect fuzzing in RTP header. In
comparison, we use a novel Markov model to detect fuzzing
in the payload of RTP packets. Our results show that our
system can detect fuzzing in header and payload with sig-
nificantly high accuracy. Moreover, the system has small
processing and memory overheads. In future, we want to
develop an intelligent model for dropping fuzzed packets.
More specifically, we want to analyze the effect of dropping
payload fuzzed packets on the quality of media stream.

Acknowledgments
The work is supported by National ICT R&D Fund, Min-
istry of Information Technology, Government of Pakistan
through grant # ICTRDF/TRD/2007/59. The information,
data, and views detailed herein may not necessarily reflect
the endorsements of views of the National ICT R&D Fund.

7. REFERENCES
[1] H.J. Abdelnur et al. KiF: a stateful SIP fuzzer. In

IPTCOMM’07, pages 19–20, 2007.

[2] M.A. Akbar et al. Application of evolutionary
algorithms in detection of SIP based flooding attacks.
In GECCO’09, pages 1419–1426. ACM, 2009.

[3] Asterisk-Dev. Asterisk crashes when receiving
malformed RTP packets, 2004.

http://www.mail-archive.com/asterisk-dev@

lists.digium.com/msg03417.html.

[4] Ubuntu Bugs. Wireshark crash when analysing one
RTP stream, 2008. https://bugs.launchpad.net/
ubuntu/+source/wireshark/+bug/238486.

[5] I. Dacosta et al. Security Analysis of an IP Phone:
Cisco 7960G. In IPTCOMM, page 255. Springer, 2008.

[6] M. Fannes et al. The mutual affinity of random
measures. Periodica Mathematica Hungarica,
47(1):51–71, 2003.

[7] GTISC. Emerging Cyber Threats Report for 2009,
2008. http://www.gtiscsecuritysummit.com/pdf/
CyberThreatsReport2009.pdf.

[8] D. Hoffman et al. RTP Payload Format for
MPEG1/MPEG2 Video. RFC 2250, 1998.

[9] Ipoque. Internet Study 2007.
http://www.ipoque.com/resources/

internet-studies/internet-study-2007.

[10] J.G. Kemeny. Finite markov chains. Springer, 1976.

[11] M. Nassar et al. Monitoring SIP Traffic Using Support
Vector Machines. In RAID’08, pages 311–330.
Springer, 2008.

[12] C. Perkins et al. Options for Repair of Streaming
Media. RFC 2354, 1998.

[13] J.R. Quinlan. C 4.5: Programs for machine learning.
Morgan Kaufmann Publishers, USA, 1993.

[14] Secunia Advisory SA12478. mpg123 Mpeg Layer-2
Audio Decoder Buffer Overflow Vulnerability, 2004.
http://secunia.com/advisories/12478/.

[15] SANS-Institute. SANS Top-20 2007 Security Risks,
2007. http://www.sans.org/top20/.

[16] H. Schulzrinne et al. RTP: A transport protocol for
real-time applications. RFC 1889, 1996.

[17] Mu Security. Multiple buffer overflows in Asterisk
[MU-200803-01], 2008. http://labs.mudynamics.com/
advisories/MU-200803-01.txt.

[18] H. Sengar et al. VoIP intrusion detection through
interacting protocol state machines. In DSN’06, 2006.

[19] H. Sengar et al. Detecting VoIP Floods using the
Hellinger Distance. IEEE Trans. on Parallel and
Distributed Sys., 19(6):794–805, 2008.

[20] Dug Song. dsniff - Collection of tools for network
auditing and penetration testing, 2001.
http://www.monkey.org/~dugsong/dsniff/.

[21] S.M. Tabish et al. Malware detection using statistical
analysis of byte-level file content. In ACM
CSI-KDD’09, pages 23–31. ACM, 2009.

[22] The-VoIP-Network. VoIP Market Trends, 2008. http:
//www.the-voip-network.com/voipmarket.html/.

[23] VOIPSA. Voip Security Tool List, 2010.
http://www.voipsa.org/Resources/tools.php.

[24] C. Wieser et al. Security analysis and experiments for
Voice over IP RTP media streams. In SSI’06, pages
8–10, 2006.

[25] Wireshark-bugs. Wireshark crashes when trying to
play RTP stream, 2009. http://www.wireshark.org/
lists/wireshark-bugs/200910/msg00227.html.

[26] Y. Wu et al. SCIDIVE: A Stateful and Cross Protocol
Intrusion Detection Architecture for Voice-over-IP
Environments. DSN’04, 2004.

