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Abstract—The TP Multimedia Subsystem (IMS) framework
uses Session Initiation Protocol (SIP) for signaling and control
of sessions. In this paper, we first demonstrate that SIP flooding
attacks on IMS can result in denial of service to the legitimate
users. Afterwards, we report our comparative study of three
well-known anomaly detection algorithms, Adaptive threshold,
Cumulative sum, and Hellinger distance) for detection of flood
attacks in IMS. We evaluate the accuracy of the algorithms using
a comprehensive traffic dataset that consists of varying benign
and malicious traffic patterns.

I. INTRODUCTION

We are witnessing the integration of cellular networks
and the Internet. The tremendous rise in popularity of IP
telephony and an ever-increasing demand for novel Internet-
based multimedia applications have resulted in a new all
IP standard known as IMS. It is used for provisioning of
multimedia services on fixed and mobile networks. IMS uses
common Internet-based protocols to provide service control
architecture for multimedia services [1]. IMS only deals with
signaling and control of sessions and it is not responsible for
transport of the multimedia traffic.

IMS uses SIP for signaling and control of multimedia
sessions. Since IMS is based on SIP, its main elements are
SIP proxies/servers, known in the IMS core as Call Service
Control Functions (CSCF) [2]. The Proxy CSCF (P-CSCF)
acts as a gateway for all SIP session requests from users.
P-CSCF forwards the incoming SIP requests to the Serving
CSCF which ultimately controls the session. The smooth
and uninterrupted operation of CSCFs is vital for successful
provision of services in the IMS framework. With an increase
in the number of telecom operators which support IMS for
service provisioning, the fear of assault from malicious hackers
(illegitimate users or compromised legitimate users) has also
increased. Such an attack may disrupt services and cause
significant financial losses to the service operators and users.

SIP proxies/servers are vulnerable to a wide variety of
attacks. The most common attack is the Denial of Service
(DoS) attack. It can be launched in two ways: (1) In flooding
attacks, a malicious user (or users) sends a large number of SIP
messages that overload the SIP server! and this subsequently

UIn this study, we do not distinguish spoofed flood attacks because three
anomaly detection algorithms selected for our study perform their analysis
only on aggregate values of the features.

results in significant delays, and (2) malformed SIP requests
are used to exploit vulnerabilities in SIP parser implementa-
tions to crash the server or force it to execute malicious code.
We maintain the focus of this study on flooding attacks only.

In 2003, the 3rd Generation Partnership Project 2 (3GPP2)
released a comprehensive security framework for IMS [3].
This framework addresses many vulnerabilities in the SIP
protocol. But this framework does not specify any mechanism
for the detection of flooding attacks. In IMS community, the
anomaly detection algorithms remain relatively unexplored.
The authors in [4] have suggested using a threshold on CPU
usage to detect flooding attacks launched on IMS compo-
nents. A malicious hacker can simply vary the patterns of
attack traffic to circumvent such naive security mechanisms.
A sophisticated anomaly detection algorithm can provide
significantly better defense against such malicious attacks. The
authors in [5], [6] have proposed anomaly detection schemes
for detection of flooding attacks on general SIP based Voice
over IP (VoIP) applications. In the last decade, web servers
have faced similar Transport Control Protocol (TCP) based
flooding attacks. Many anomaly detection algorithms have
been explored for protecting the web servers against TCP SYN
flooding attacks [7], [8].

In this paper, we customize some well known existing
anomaly detection algorithms to provide security against SIP
flooding attacks in IMS and evaluate their accuracy on a
synthetic traffic data. The SIP traffic brings in some additional
requirements for anomaly detection. The detection accuracy
needs to be higher as even a relatively small rate of flood traffic
can clog a SIP server. Moreover, the time-constrained nature
of SIP traffic makes time-consuming computations infeasible.
Therefore, the criteria for selection of three algorithms are
based on high detection accuracy and low complexity. We
choose adaptive threshold and cumulative sum which were
originally proposed for providing security at transport layer
in the Internet [7]. Both of these algorithms provided high
accuracy in SYN flooding attacks on TCP [7]. We also choose
Hellinger distance algorithm from the category of anomaly
detection algorithms which were proposed for detection of
VoIP flooding attacks [5]. The important contributions of this
work are listed below.

1) Adaptation of well known anomaly detection algorithms,

Adaptive threshold and Cumulative sum, from transport



layer to application layer.

2) Generation of comprehensive traffic datasets to evaluate
these algorithms under malicious traffic datasets.

3) Comparing accuracy of three algorithms for SIP flood
detection in IMS using our traffic datasets. We discuss
the effect of design parameters of algorithms on their
detection accuracy.

II. RELATED WORK

Security in IMS has received little attention [9]. Some
security frameworks (such as [4], [9] and [10]) have been
proposed to detect flooding attacks in IMS. The authors of [4]
proposed detection of flooding attacks by monitoring the CPU
usage of the IMS components. A careful hacker can evade
this security measure by crafting an attack that keeps the CPU
usage below the threshold. The authors of [9] have proposed an
artificial immune system based algorithm for detection of flood
attacks on IMS. The authors have compared their framework’s
performance with a signature-based algorithm. The authors
of [5] and [6] have used anomaly detection algorithms for
security in VoIP networks. The authors of [5] have proposed a
SIP-based flooding attack detection using Hellinger distance.
The experimental results are very promising. However, the
experiments are limited to detection accuracy against variation
in flood attack intensity only. The authors of [6] proposed an
Application Layer Attack Sensor (ALAS), which is able to
detect SIP flooding attacks with high accuracy. In [7], adaptive
threshold and cumulative sum algorithms have been applied
for detection of TCP SYN flood attacks.

III. ANOMALY DETECTION ALGORITHMS

In this paper, we compare accuracy of three well-known
anomaly detection algorithms: Adaptive threshold, Cumulative
sum and Hellinger distance, utilized to provide protection
against flooding attacks in IMS. Malicious users can launch
these attacks on P-CSCF by sending bursts of INVITE pack-
ets. We define accuracy of an anomaly detection algorithm in
terms of detection rate and false positive rate. We now provide
a brief overview of three algorithms that will help the reader in
understanding our enhancements and adaptations for providing
security in P-CSCF.

1) Adaptive Threshold: In this algorithm, we simply calcu-
late moving average of a given feature in a predefined time-
window. We calculate current value of ji,, as follows [7]:

p’n = ﬁﬁnfl + (1 - 6)$nu (1)

where x,, is the value of feature in time-window n, f, and
[in—1 are the moving averages in time-windows n and n — 1
respectively, and 3 is the weight assigned to past and current
moving averages. Now the adaptive threshold is (o +1)fip—1,
where o > 0 is the percentage above moving average that
raises an initial suspicion about a malicious behavior. If this
suspicion is raised for k consecutive time-windows then an
alarm about the malicious activity is raised. Mathematically,

we represent it as [7]:
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At the transport layer, the feature is the number of SYN
packets in a fixed time-window. At the application layer, we
map the number of SYN packets with the number of INVITE
packets. We took x, as the number of INVITE packets
arrived. The time-window is of 10 seconds. Moreover the
design parameters of the algorithm, o and 3 at the transport
layer are to be mapped on the application layer. We empirically
evaluated the algorithm on SIP traffic and then fine tuned the
values of o and 3 to 0.3 and 0.8 respectively.

2) Cumulative Sum: Cumulative sum (CUSUM) is an al-
gorithm that is used in data mining for detection of change
in a statistical distribution between two hypotheses. It detects
a change by computing the difference, g,, between log-
likelihood ratio, .S,,, of feature values for the two hypothesis
and its current minimum value m,,. We used a simple method
to compute this difference proposed in [7]. The moving
average of a feature in a time-window is computed using the
adaptive threshold. The simplified iterative formula [7] is

Qflp—1
gn = [gnfl + MnQ
g

fin 1 — 2Ly (3)
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where ¢, and g,_1 are the estimated differences in time-
windows n and n — 1, « is the percentage above moving
average for suspicious activity, fi,—1 is the moving average
for time-window n — 1, o2 is the variance of the feature, and
T, is the current value of the feature. If g,, exceeds the given
threshold value A, an alarm is raised.

The adaptation of CUSUM algorithm from transport layer
to application layer was done similar to the adaptation of
Adaptive threshold algorithm. The feature was mapped from
the number of SYN packets to the number of INVITE packets.
We took x, as the number of INVITE packets arrived.
The time-window is of 10 seconds. The values of design
parameters of algorithm were mapped to the application layer.
We empirically evaluated the algorithm on SIP traffic and then
fine tuned the values of o, B and ¢2 to 0.4, 0.7 and 100
respectively.

3) Hellinger Distance: The Hellinger distance (HD) is “a
metric that quantifies the deviation between two probability
measures” [11].

The authors of [5] have used HD to detect anomalies in
SIP. They took four attributes of SIP which are the number
of INVITE, 200 OK, ACK and BYE packets arrived in a
predefined time-window. The algorithm consists of training
and testing phases. In the training phase, the normalized
frequencies piwviTe, P2000k> Pack, Pevye for INVITE, 200
OK, ACK and BYE respectively are calculated over the training
dataset. Similarly, the normalized frequencies qryviTes 2000k,
Gack, Geye are calculated in the testing phase for each time-
window n. The HD between these frequency distributions of
two phases is:



HD = (\/pINVITE - \/QINVITE)2 + (\/p2000K - \/QZOOOK)2

+(/Pack — /@acx)> + (\/Peve — /Tovz)?

The threshold value is a function of the average of observed
HDs and their mean deviation [5]. The authors in [5] have
described a mechanism for determining the threshold dynam-
ically. If an observed HD is greater than this threshold value
then an alarm is raised. The feature values are calculated in a
time-window of 10 sec. The training dataset has a duration of
120 seconds.

IV. PERFORMANCE EVALUATION

In this section, we describe our strategy for performance
evaluation and comparison of the anomaly detection algo-
rithms. First we define the metrics used for comparing perfor-
mance. Then we describe the different traffic patterns used by
us to study the impact of different design options of algorithms
on their performance. After this, we discuss in detail different
traffic sets with varying traffic patterns, generated for our
experiments. Finally, we illustrate how we injected malicious
traffic into benign traffic sets.

A. Performance Metrics

In a comparative study, the metrics used for comparison
of algorithms must be carefully selected. In practice, the
performance of anomaly detection schemes is mostly reported
in terms of detection rate (DR) and false alarms rate (FAR).
In the context of this study, we define detection rate as the
fraction of anomalous traffic that was successfully detected.
Similarly, we define false alarms rate as the fraction of benign
traffic that was incorrectly labeled as anomalous. In our case, a
malicious user launches flooding attack by exploiting hardware
or software vulnerabilities in our VoIP user agent in a soft
phone. Our objective is to identify an anomaly detection
algorithm with high detection rate and low false alarms rate.

B. Generation of Traffic Sets

We did not find a publicly available traffic dataset of a real
world SIP server. The important reason is the privacy concern
of the users. Therefore, we were left with no option but to
synthetically generate traffic data.

The SIP traffic was generated using an open source SIPp
[12] tool. It can generate SIP messages and has the ability
to simulate customized SIP scenarios. The scenarios are de-
scribed in eXtensible Markup Language (XML) syntax. SIPp
gives a user complete control of the simulated scenarios at a
predefined UDP port. The basic SipStone [13] SIP server and
client scenarios are distributed with SIPp. We modified these
scenarios according to our requirements.

The SIP server and client scenarios simulate a typical SIP
call flow with INVITE, 180 RINGING, 200 OK, ACK, BYE
and ACK packets as shown in Fig. 1. The call rate is controlled
at runtime by sending commands to SIPp at the predefined
UDP port. The call length is fixed at 60 seconds. Random
packet loss is also simulated in the scenario. The traffic traces
are collected using Wireshark [14].

IMNYITE
180 RINGING |
200 QK
{_ _______
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BYE
200 OK i
{_ _____ u—
SIF Client SIF Server
Fig. 1. Typical SIP call setup flow [13]
TABLE I
CHARACTERISTICS OF TRAFFIC SETS
[ Traffic | Type [ Duration | Mean | Distribution |
LLS Normal 60 min 500 calls/min normal
MLS Normal 60 min 750 calls/min normal
HLS Normal 60 min 1000 calls/min normal
VLHA Attack 1 min 25 calls/sec constant
LHA Attack 1 min 50 calls/sec constant
MHA Attack 1 min 100 calls/sec constant
HHA Attack 1 min 300 calls/sec constant
VHHA Attack 1 min 500 calls/sec constant
VLCA Attack 10 min 25 calls/sec constant
LCA Attack 10 min 50 calls/sec constant
MCA Attack 10 min 100 calls/sec constant
HCA Attack 10 min 300 calls/sec constant
VHCA Attack 10 min 500 calls/sec constant

C. Experimental Characteristics

We analyze the performance of three algorithms in three
scenarios: (1) varying the average traffic load on P-CSCEF, (2)
varying the intensity of attack, and (3) varying the duration of
attack.

The traffic characteristics of different scenarios are tabulated
in Table I. Normal scenarios for SIP servers serving three
different benign traffic loads are simulated. These are labeled
as Low Load Server (LLS), Medium Load Server (MLS)
and High Load Server (HLS) in Table I. The traffic load is
modeled as a normal distribution. The mean of this distribution
represents the average traffic load on the corresponding P-
CSCEF. The mean traffic loads are 500 calls/min, 750 calls/min
and 1000 calls/min for LLS, MLS and HLS respectively. Fig.
2 shows normally distributed traffic loads of LLS, MLS and
HLS in an hour.

In Table I, harmonic attack traffics are labeled with suffix
‘HA’ and are for one minute each. VLHA is the Very Low
intensity Harmonic Attack traffic with a constant traffic load
of 25 calls/sec and duration of 1 minute. Similarly, LHA
stands for Low intensity Harmonic Attack traffic, MHA for
Medium intensity Harmonic Attack traffic, HHA for High
intensity Attack traffic and VHHA for Very High intensity
Harmonic Attack traffic. Similar convention has been followed
for labeling prolonged (chunk) attacks. The prolonged attacks
are labeled with suffix ‘CA’ and have duration of ten minutes.
VLCA stands for Very Low intensity Chunk Attack traffic,
LCA for Low intensity Chunk Attack traffic and so on.
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D. Anomaly Injection

We inject attack traffic into benign traffic to generate our
final dataset. The harmonic attack traffic is injected at multiple
locations in the benign traffic to mimic the behavior of an
attacker who launches flood attacks of a short duration but
at a high frequency. The prolonged attack traffic is injected
at a single location in the benign traffic so that it models an
attacker who launches prolonged flood attacks but at a low
frequency. In Fig. 3, one can see a dataset in which both
harmonic and prolonged attacks were launched. The solid
curves represent the benign traffic while the dashed curves
represent the injected attack traffic. The total collection period
of dataset with embedded anomalies is one hour. The datasets
for all possible combinations of benign and malicious traffic
given in Table I have been generated. This resulted in 30
different test scenarios for our experiments.

For all datasets, we calculate the number of INVITE, ACK,
200 OK and BYE packets sent or received in a time interval
of 10 seconds. As a result, we can generate histograms of
each feature and afterwards different classification algorithms
are applied on each histogram for an appropriate range of
threshold values. Each algorithm’s detection rate and false
alarms rate are calculated for each dataset. The results of these
experiments are described in detail in the next section.

V. RESULTS

To detect flooding attacks, the anomaly detection algorithms
measure the deviation of selected features from their benign
values. In the context of P-CSCF, the average traffic load
defines its benign behavior. The adaptive threshold algorithm

sets its threshold using (o + 1)fin—1 (see section III), there-
fore, slight change in traffic volume is expected to have a
large impact on estimated mean value. Consequently, adaptive
threshold algorithm results in significantly higher false alarm
rate under high traffic load. In comparison, cumulative sum
detects the point of change in feature space and hellinger dis-
tance measures deviation from mean feature value; therefore,
these schemes have no impact with an increase in traffic load.

The intensity of attack significantly alters the deviation from
normal behavior. Therefore, we expect that increase in attack
intensity should make it easier for all algorithms to detect the
attack. In other words, the high intensity attacks should have
higher detection rate and lower false alarms rate compared
with medium intensity attacks. Similarly, medium intensity
attacks should have higher detection rate with lower false
alarms rate as compared with low intensity attacks.

Adaptive threshold and cumulative sum algorithms update
their notion of benign behavior from dataset, as a result,
prolonged attacks can mislead them to detect anomalous
behavior as normal. The adaptive threshold algorithm sets
its threshold directly proportional to the mean value of the
feature, we expect its performance for prolonged attacks to be
relatively poor. The cumulative sum is a ‘point of change de-
tection’ algorithm, therefore, it will suffer less deterioration in
performance for prolonged attacks. Hellinger distance scheme
requires initial training on normal data and does not change
its sense of normal behavior on the basis of testing dataset;
therefore, we expect it to have very slight performance change
with variation in attack duration and frequency.

The experimental results are summarized in Table II. Fig-
ures 4, 5, 6 and 7 show the receiver operating characteristic
(ROC) curves for the three algorithms for varying attack
intensity, attack duration and normal traffic load. ROC curves
display the trade-off between false alarm rate and detection
rate. Now we discuss the experimental results in detail.

A. Adaptive Threshold

1) Effect of variation in normal traffic load: Fig. 4 shows
the variation in performance when normal traffic load of server
is changed. As expected, the performance of adaptive threshold
algorithm degrades with increase in normal traffic load.

2) Effect of variation in attack intensity: The performance
of adaptive algorithm varies significantly with variation in at-
tack intensity. As expected, high intensity attacks are relatively
accurately detected with less false alarms than that of low
intensity attacks. From Table II, we can see that for a false
alarm limit of 2%, the detection rate for very low intensity
harmonic attack (25 calls/sec) is 77% while very high intensity
harmonic attack (500 calls/sec) has a 100% detection rate. The
variation in attack intensity for chunk attacks produces similar
results. The algorithm’s detection rate increases from 7% to
28% when attack intensity is increased from 25 calls/sec to
500 calls/sec. Fig. 5 clearly shows that the trade-off between
detection rate and false alarm rate improves with increase in
attack intensity for both harmonic and chunk attacks.



TABLE I
DETECTION RATE (IN %) FOR VARIOUS ATTACK INTENSITIES AND DURATIONS - RESULTS ENCLOSED IN PARENTHESIS ARE OBTAINED BEFORE
RE-TUNING OF ALGORITHMIC PARAMETERS

Algorithm FAR | VHHA | HHA | MHA | LHA | VLHA | VHCA HCA MCA LCA VLCA
0 33 33 33 30 10 18(5) 18(5) 13(3) 12(3) 0(0)
Adaptive 2 100 100 100 97 7 28(12) | 28(12) | 23(10) | 22(10) 7(7)
threshold 5 100 100 100 100 85 43(14) | 43(14) | 38(12) | 37(12) | 22(10)
10 100 100 100 100 100 68(17) | 65(17) | 63(14) | 62(14) | 47(12)
0 67 67 83 83 83 0(18) 0(18) 0(13) 10(12) | 28(12)
Cumulative 2 83 83 83 83 93 33(28) | 33(28) | 38(23) | 45(22) | 58(52)
sum 5 83 83 100 100 100 87(43) | 88(43) | 92(38) | 97(37) | 97(85)
10 100 100 100 100 100 93(68) | 95(68) | 97(63) | 98(62) | 98(90)
0 100 100 100 100 97 28 28 27 23 5
Hellinger 2 100 100 100 100 100 100 100 100 100 98
distance 5 100 100 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100 100 100
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Fig. 4. ROC curves for different normal traffic loads
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3) Effect of variation in attack duration: The adaptive
threshold algorithm performs better for harmonic attacks as
compared to chunk attacks. At a cost of 2% false alarms rate,
its detection accuracy for medium intensity harmonic attack is
100%. Whereas, in case of chunk attacks, for the same false
alarms rate, its detection rate is only 10%. We tried to improve
this performance by changing the parameters (« and (3), but
the detection rate could not be improved beyond 23%.

As the parameters are constant at run-time, the algorithm
can not provide its best performance for both harmonic and
chunk attacks at the same time. Figure 5 shows the best
performance of adaptive algorithm for both harmonic and
chunk attacks. The graph clearly indicates the superior perfor-
mance of adaptive algorithm for harmonic attacks as compared
to chunk attacks. The graphs have been obtained by using
different parameters for the algorithm.
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B. Cumulative Sum

1) Effect of variation in normal traffic load: Fig. 4 shows
that the performance of cumulative sum algorithm is indepen-



dent of normal traffic load.

2) Effect of variation in attack intensity: As expected, cu-
mulative sum shows variation in performance against variation
in attack intensity. However, quite surprisingly, cumulative
sum shows better performance against low intensity attacks
as compared to high intensity attacks. According to Table II,
for 5% false alarm rate, cumulative sum has a detection rate of
100% for very low intensity harmonic attacks as compared to
83% detection rate for very high intensity harmonic attacks.
Similar trend is obvious for chunk attacks too. We observe
that for 5% false alarm rate, cumulative sum has a detection
rate of 97% for very low intensity chunk attacks as compared
to 87% detection rate for very high intensity chunk attacks. A
close look at Fig. 6 confirms that cumulative sum has slightly
better performance for low intensity attacks as compared to
high intensity attacks.

The reason for this unusual behavior is that cumulative sum
tries to detect the negative drift in feature to mark beginning
of attack and positive drift for marking end of attack. A
sudden change in drift cannot be accurately followed as the
drift detection function has been modeled linearly. This leads
to relatively large number of false alarms. As the intensity
of attack increases, the slope becomes steeper (greater drift);
hence the number of false alarms is increased.

3) Effect of variation in attack duration: The performance
of cumulative sum algorithm is significantly better under har-
monic attacks compared with prolonged attacks. A comparison
between harmonic and chunk attacks in Table II reveals that
the detection rate for cumulative sum falls from 100% to
38% for medium intensity attack and 5% false alarms rate.
But by re-tuning of algorithmic parameters, the detection rate
increases to 92%. This is an indication that the algorithm
cannot perform optimally both for harmonic and chunk attacks
for same set of parameter values. Fig. 6 shows the difference
in performance of the algorithm in case of harmonic and chunk
attacks. The graphs are obtained for different sets of parameter
values of the algorithm. If the parameters are kept constant, the
algorithm’s performance is significantly degraded for chunk
attacks (see values enclosed by parentheses in Table II).

C. Hellinger Distance

1) Effect of variation in normal traffic load: Fig. 4 shows
that there is no variation in performance of Hellinger distance
once we change the benign traffic load of the server.

2) Effect of variation in attack intensity: It is evident from
Table II that for 0% false alarm rate, the detection rate is 97%
for very low intensity harmonic attack and 100% for very high
intensity harmonic attack. We observe that for 2% false alarms
rate, the detection rate is 98% for very low intensity chunk
attack and 100% for very high intensity chunk attack. Fig. 7
shows that the curves for different attack intensities overlap.
Thus, Hellinger distance algorithm is robust to variations in
attack intensity.

3) Effect of variation in attack duration: Hellinger distance
algorithm significantly outperforms adaptive rate threshold and
cumulative sum but does not require re-tuning of algorithmic

parameters. Table II shows that for a false alarms rate of
2%, hellinger distance algorithm has a detection rate of
100% for very low intensity harmonic attack and 98% for
very low intensity chunk attack. Fig. 7 shows that difference
in performance is very small between harmonic and chunk
attacks. Both graphs use same set of algorithmic parameters.

VI. CONCLUSION & FUTURE WORK

In this paper, we compared three well-known anomaly
detection algorithms and evaluated their detection accuracy
for malicious traffic datasets. The experiments were designed
to show the effect of design parameters on the detection
accuracy of algorithms for different attack patterns. From
the results, we can see that Hellinger distance algorithm
outperforms Adaptive threshold and Cumulative sum. It has
a better detection accuracy and does not require retuning of
its parameters. It is robust to variations in benign and attack
traffic patterns.

In future work, we plan to include the DoS attacks using
malformed SIP packets in our study. We also plan to include
more anomaly detection algorithms in our study and perform
experiments on real world IMS traffic dataset.
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